Threshold Effects of Sovereign Debt: Evidence from the Caribbean

BY:

Kevin Greenidge
Roland Craigwell
Chrystol Thomas
Lisa Drakes
Outline of Presentation

• Introduction
• The Historical Behavior of Debt in the Caribbean
• Brief Review of the Literature
• Methodology & Data
• Results
• Conclusion
Introduction

Public Sector Debt in Selected Countries, end-2010
(In percent of GDP)

Sources: IMF, WEO; 1/ Average of Emerging Markets and Developing Economies.
Introduction

- Debt of Caribbean countries has been increasing over the last decade, and at a particularly faster rate during this crisis period.

ECCU: Contribution to Changes in Public Debt
(In percent of GDP)

Sources: Country authorities' and Fund staff calculations.
Introduction

- Allowing debt to grow too large can offset its positive growth effects.

- Past studies have tried to identify the threshold level (w.r.t growth) for the debt-to-GDP, but do not focus specifically on the region.

- This study identifies a threshold level for the Caribbean using the Hansen (1996, 2000) approach, as well as a new approach that is adopted to a growth model specifically designed for CARICOM.
The Historical Behavior of Debt in the Caribbean
Brief Review of the Literature

• Empirical studies on growth usually use the following regression:

\[y_{i,t} = \gamma X_{i,t} + \varepsilon_{i,t} + \pi Z_{i,t} + \varphi D_{i,t} + \omega (D_{i,t} \cdot ?_{i,t}) \]

• \(Y \) is real GDP per capita. \(X \) are the determinants suggested by the Solow growth model. \(Z \) are those that lie outside the original Solow theory. \(D \) is the indicator for the variable under study.

• There is a wide range of \(Z \) variables used in growth empirics, but few are applicable to the region.

• \(Z \) determinants used in this study are: Fiscal policy; Openness to international trade; Inflation; Investment; and the Population growth rate.
Review of the Literature (cont’d)

• Debt is another variable that could be influencing growth in the region:
 – Borrowed capital can be used to boost investment
 – Debt can have a growth-reducing effect above a certain threshold [see, e.g.: debt overhang theory; liquidity/budget constraint hypothesis]

• There is therefore likely to be a non-linear relationship between debt and growth

• Recent studies now focus on identifying a turning point/threshold.
Review of the Literature (cont’d)

- Varied results for studies that try to estimate the point at which debt begins to negatively affect growth:

<table>
<thead>
<tr>
<th>Study</th>
<th>Estimated Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinhart & Rogoff (2010)</td>
<td>90% central government to GDP</td>
</tr>
<tr>
<td></td>
<td>60% external debt to GDP</td>
</tr>
<tr>
<td>Caner et al. (2010)</td>
<td>77% public debt to GDP</td>
</tr>
<tr>
<td></td>
<td>64% public debt to GDP for (emerging markets)</td>
</tr>
<tr>
<td>Patillo et al. (2002)</td>
<td>30-40% external debt to GDP</td>
</tr>
<tr>
<td>Clements et al. (2003)</td>
<td>50% external debt to GDP</td>
</tr>
</tbody>
</table>

- Common approaches used: histograms, spline functions, threshold estimations.
- Much of the work on the debt-growth link has been for developed and developing countries.
- Most research for the Caribbean assumed a linear specification, and found that debt is negatively related to economic growth. See for instance: Caldentey (2007); Branch & Adderley (2007)
- Boamah & Moore (2009) assumed nonlinearity and found a threshold of 63% for external public debt to GDP
Methodology

- The following threshold least square regression model is adopted:

\[
y_{it} = \alpha_i (D_{it} \leq \lambda) + \alpha_i (D_{it} \lambda) + \beta_{1i} X_{it} (D_{it} \leq \lambda) + \beta_{2i} X_{it} (D_{it} > \lambda) + \beta_{3i} D_{it} (D_{it} \leq \lambda) + \beta_{4i} D_{it} (D_{it} > \lambda) + \varepsilon_{it}
\]

- We begin at \(\lambda = 22\%\) and increase it by 1 percentage point up to 110\%, each time estimating the above relationship.

- Results are graphed, and we can identify a turning point.

- This approach does not allow for an accurate assessment of the statistical significance of the thresholds by providing confidence intervals. The Hansen (1996, 2000) framework is therefore estimated.
Methodology (cont’d)

• The Hansen (1996, 2000) threshold framework:

\[
y_{it} = \gamma_1(1 - I_{it}^D)(D_{it} - D^*) + \gamma_2 I_{it}^D (D_{it} - D^*) + \theta' X_{it} + e_{it}
\]

\[
I_{it}^D = \begin{cases}
1 & \text{if } D_{it} > D^* \\
0 & \text{if } D_{it} < D^* \\
i = 1, \ldots, N \\
t = 1, \ldots, T
\end{cases}
\]

• The model is again estimated with a threshold search over the range 22 to 112 percent in increments of 0.1% a total of 900 regressions.

• Under the hull hypothesis of no threshold, classical tests have non-standard distributions and are not appropriate for econometric inferences.

• Hansen (1996, 2000) recommended a bootstrap technique to simulate the empirical distribution of the following likelihood ratio test:

\[
LR_0 = \frac{S_0 - S_1(D^*)}{\sigma^2}
\]
Results

Impact of Debt on Growth (in percentage points)
at debt thresholds up to and including the indicated debt-to-GDP ratio
Results

Impact of Investment on Growth (in percentage points) at debt thresholds up to and including the indicated debt-to-GDP ratio

Debt Threshold Levels
Results

Impact of Trade on Growth (in percentage points) at debt thresholds up to and including the indicated debt-to-GDP ratio
Impact of Government Expenditure on Growth (in percentage points) at debt thresholds up to and including the indicated debt-to-GDP ratio
Results

Impact of Inflation on Growth (in percentage points)
at debt thresholds up to and including the indicated debt-to-GDP ratio
Results – the Hansen Approach

• A threshold of 30.6 % is identified.
• The bootstrap estimation for the significance of threshold estimates suggests that the threshold estimate is significant at 1%.
• The model is re-estimated with the corresponding threshold and the results are consistent with the above analysis.
• Specifically, the coefficient on γ_1 is positive and significant suggesting that debt level lower then 30 percent of GDP is associated with positive economic growth.
• However, the coefficient γ_2 is negative and significant, which implies that once the debt rises above 30 percent of GDP the relationship between debt and growth becomes negative.
Conclusion

• We contribute to the literature by identifying the effects different levels of debt-to-GDP ratios have on economic growth rates in the Caribbean.

• The study adopted the threshold estimation approach as described by Hansen (1996, 2000) and a variant thereof.

• The findings validated the notions that emerging markets face lower thresholds of debt-to-GDP (Reinhart and Rogoff, 2010a) and that high levels of debt, especially for low income or developing countries, can have adverse effects on growth levels.

• The results indicated that debt contributes positively to growth when it is below 30% of GDP but becomes a main concern for output beyond 56% of GDP.
Conclusion

• Compared to Reinhart and Rogoff, (2010a) and Caner et al. (2010), a much lower threshold was found for the Caribbean region because of its small size and lack of physical resources.

• Given that most of the countries under investigation currently have high debt-to-GDP ratios that are above the suggested turning point threshold, it is critical for governments to engage in fiscal consolidation.
Thanks for your attention.